Using the ideal gas law:
\[
T_{\text{ideal}} = \frac{Pv}{R}
= \frac{(10{,}000\ \text{kPa})(0.005)}{0.3}
= 166.67\ \text{K}.
\]
For the Van der Waals gas:
\[
\left(P + \frac{a}{v^2}\right)(v - b) = R T.
\]
Compute the correction terms:
\[
\frac{a}{v^2} = \frac{0.18}{(0.005)^2} = 7200\ \text{kPa},
\]
\[
P + \frac{a}{v^2} = 10000 + 7200 = 17200\ \text{kPa},
\]
\[
v - b = 0.005 - 0.0014 = 0.0036.
\]
Thus,
\[
T_{\text{vdW}} = \frac{17200 \times 0.0036}{0.3}
= 206.40\ \text{K}.
\]