Step 1: Biot–Savart law.
Magnetic field due to a small element $dl$ at point $P$:
\[
dB = \frac{\mu_0}{4\pi} \frac{I \, dl \, \sin \theta}{r^2}.
\]
Step 2: For circular loop.
At centre of coil: $r = R$, $\sin \theta = 1$, so
\[
dB = \frac{\mu_0}{4\pi} \frac{I \, dl}{R^2}.
\]
Step 3: Integrate over loop.
Total length of coil = $2 \pi R$:
\[
B = \frac{\mu_0}{4\pi} \frac{I (2\pi R)}{R^2}.
\]
\[
B = \frac{\mu_0 I}{2R}.
\]
Step 4: For N turns.
\[
B = \frac{\mu_0 N I}{2R}.
\]
Step 5: Conclusion.
The magnetic field at the centre of circular coil is:
\[
B = \frac{\mu_0 N I}{2R}.
\]