TR \(=P(Q)\cdot Q\). अतः
\[
MR=\frac{dTR}{dQ}=P+Q\frac{dP}{dQ}.
\]
माँग‑लोच \(\varepsilon=-\dfrac{dQ}{dP}\cdot\dfrac{P}{Q}\Rightarrow Q\dfrac{dP}{dQ}=-\dfrac{P}{\varepsilon}\).
इसे MR में रखने पर
\[
MR=P-\frac{P}{\varepsilon}=AR\!\left(1-\frac{1}{\varepsilon}\right).
\]
अतः \(\displaystyle \frac{AR}{MR}=\frac{\varepsilon}{\varepsilon-1}\Rightarrow AR=MR\!\left(\frac{\varepsilon}{\varepsilon-1}\right).\)