Step 1: Express the gravitational constant $GM$ in terms of $g$ and $R$.
\[
g=\frac{GM}{R^2}\ \Rightarrow\ GM=gR^2
\]
Step 2: Identify the initial and final distances of the moon’s centre from the centre of the earth.
\[
r_i = 60R
\]
Since the moon has radius $\dfrac{R}{4}$, it strikes the earth when the distance between centres is:
\[
r_f = R+\frac{R}{4}=\frac{5R}{4}
\]
Step 3: Use conservation of mechanical energy.
Initial velocity is zero, so:
\[
\frac{1}{2}mv^2 = GMm\left(\frac{1}{r_f}-\frac{1}{r_i}\right)
\]
Step 4: Substitute the values:
\[
\frac{1}{2}v^2 = gR^2\left(\frac{1}{\frac{5R}{4}}-\frac{1}{60R}\right)
\]
Step 5: Simplify:
\[
\frac{1}{2}v^2 = gR\left(\frac{4}{5}-\frac{1}{60}\right)
= gR\left(\frac{48-1}{60}\right)
= gR\cdot\frac{47}{60}
\]
Step 6: Hence,
\[
v^2=\frac{47}{30}gR
\quad \Rightarrow \quad
v=\sqrt{\frac{47}{30}\,gR}
\]