Step 1: Recall the Parallel Axis Theorem.
The parallel axis theorem states:
\[
I = I_{\text{cm}} + Md^2
\]
where
\(I_{\text{cm}}\) = moment of inertia about the centre of mass axis,
\(d\) = distance between the two parallel axes.
Step 2: Substitute the given values.
Given:
\[
I_{\text{cm}} = \frac{ML^2}{12},
\quad d = \frac{L}{4}
\]
\[
I = \frac{ML^2}{12} + M\left(\frac{L}{4}\right)^2
\]
Step 3: Simplify the expression.
\[
I = \frac{ML^2}{12} + \frac{ML^2}{16}
\]
Taking LCM \(= 48\):
\[
I = \frac{4ML^2 + 3ML^2}{48}
\]
\[
I = \frac{7ML^2}{48}
\]
Final Answer:
\[
\boxed{I = \dfrac{7ML^2}{48}}
\]