Step 1: Convert pressure into SI units.
\[
P = 4.0 \times 10^{-15}\,\text{atm}
\]
Since,
\[
1\,\text{atm} = 1.0 \times 10^{5}\,\text{Pa}
\]
\[
P = 4.0 \times 10^{-15} \times 10^{5}
= 4.0 \times 10^{-10}\,\text{Pa}
\]
Step 2: Use the ideal gas equation to find number of moles per unit volume.
\[
PV = nRT \Rightarrow \frac{n}{V} = \frac{P}{RT}
\]
\[
\frac{n}{V} = \frac{4.0 \times 10^{-10}}{8.3 \times 300}
\approx 1.6 \times 10^{-13}\,\text{mol m}^{-3}
\]
Step 3: Convert moles into number of molecules per unit volume.
\[
\text{Number density} = \frac{n}{V} \times N_A
\]
\[
= 1.6 \times 10^{-13} \times 6 \times 10^{23}
\approx 9.6 \times 10^{10}\,\text{molecules m}^{-3}
\]
Step 4: Find the volume available per molecule.
\[
\text{Volume per molecule} \approx \frac{1}{9.6 \times 10^{10}}
\approx 1.0 \times 10^{-11}\,\text{m}^3
\]
Step 5: Estimate the mean distance between molecules.
The mean separation is approximately the cube root of volume per molecule:
\[
d \approx (10^{-11})^{1/3}
\approx 2 \times 10^{-4}\,\text{m}
\]
\[
d \approx 0.2\,\text{mm}
\]
Hence, the correct answer is \(\boxed{0.2\,\text{mm}}\).