How many possible words can be created from the letters R, A, N, D (with repetition)?
Let R = {(1, 2), (2, 3), (3, 3)} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:}
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate