Step 1:
The escape velocity from the surface of the earth is given by the formula:
\[
v_{\text{escape}} = \sqrt{\frac{2GM}{R}}
\]
where \( G \) is the gravitational constant, \( M \) is the mass of the earth, and \( R \) is the radius of the earth.
When the rocket is fired with 50\% of the escape velocity, the speed \( v \) is:
\[
v = \frac{1}{2} v_{\text{escape}} = \frac{1}{2} \sqrt{\frac{2GM}{R}}
\]
Step 2:
The maximum height \( h \) reached by the rocket can be found using the energy conservation method. The total mechanical energy at the surface is the sum of kinetic and potential energy:
\[
E_{\text{total}} = \frac{1}{2} m v^2 - \frac{GMm}{R}
\]
At the maximum height, the kinetic energy is zero, and the total energy is just the gravitational potential energy at that height. So, we have:
\[
\frac{1}{2} m v^2 - \frac{GMm}{R} = - \frac{GMm}{R + h}
\]
Substitute \( v = \frac{1}{2} \sqrt{\frac{2GM}{R}} \) into the equation:
\[
\frac{1}{2} m \left( \frac{1}{2} \sqrt{\frac{2GM}{R}} \right)^2 - \frac{GMm}{R} = - \frac{GMm}{R + h}
\]
Simplifying this:
\[
\frac{1}{2} m \cdot \frac{GM}{2R} - \frac{GMm}{R} = - \frac{GMm}{R + h}
\]
\[
\frac{GMm}{4R} - \frac{GMm}{R} = - \frac{GMm}{R + h}
\]
\[
\frac{GMm}{R} \left( \frac{1}{4} - 1 \right) = - \frac{GMm}{R + h}
\]
\[
\frac{-3GMm}{4R} = - \frac{GMm}{R + h}
\]
\[
\frac{3}{4} = \frac{R}{R + h}
\]
Solving for \( h \):
\[
R + h = \frac{4}{3} R
\]
\[
h = \frac{4}{3} R - R = \frac{R}{3}
\]
Thus, the maximum height reached by the rocket is \( \frac{R}{3} \).