We need to maximize
\[
Z = 20x + 3y
\]
subject to the constraints.
Step 1: Identify the feasible region defined by:
\[
3x + 2y \leq 10, \quad x \geq 0, \quad y \geq 0.
\]
Step 2: Find corner points of the feasible region:
- When \( x = 0 \),
\[
3(0) + 2y \leq 10 \implies y \leq 5.
\]
Corner point: \( (0, 0) \) and \( (0, 5) \).
- When \( y = 0 \),
\[
3x + 0 \leq 10 \implies x \leq \frac{10}{3}.
\]
Corner point: \( \left(\frac{10}{3}, 0\right) \).
- Intersection point of
\[
3x + 2y = 10.
\]
Step 3: Evaluate \(Z\) at corner points:
\[
Z(0, 0) = 20 \times 0 + 3 \times 0 = 0,
\]
\[
Z(0, 5) = 20 \times 0 + 3 \times 5 = 15,
\]
\[
Z\left(\frac{10}{3}, 0\right) = 20 \times \frac{10}{3} + 3 \times 0 = \frac{200}{3} \approx 66.67.
\]
Maximum value of \(Z = \frac{200}{3}\) at \(\left(\frac{10}{3}, 0\right)\).