| \( x(n) \) | ROC | ||
|---|---|---|---|
| A | Infinite duration causal sequence | I | Entire z-plane except at \( z = 0 \) |
| B | Finite duration causal sequence | II | Entire z-plane except at \( z = \infty \) |
| C | Infinite duration anticausal sequence | III | \( |z| > \alpha \), exterior of a circle of radius \( \alpha \) |
| D | Finite duration anticausal sequence | IV | \( |z| < \beta \), interior of a circle of radius \( \beta \) |
A. Infinite duration causal sequence (\(x(n)=0\) for \(n<0\)): ROC is the exterior of a circle, \(|z|>\alpha\). Matches III.
B. Finite duration causal sequence (\(x(n) \neq 0\) for \(0 \le n \le N-1\)): Z-transform is \(\sum_{n=0}^{N-1} x(n)z^{-n}\). ROC is entire z-plane except possibly \(z=0\) (if \(x(n)\) has terms for \(n>0\)). Matches I.
C. Infinite duration anticausal sequence (\(x(n)=0\) for \(n>0\)): ROC is the interior of a circle, \(|z|<\beta\). Matches IV.
D. Finite duration anticausal sequence (\(x(n) \neq 0\) for \(-N+1 \le n \le 0\)): Z-transform is \(\sum_{n=-N+1}^{0} x(n)z^{-n}\). ROC is entire z-plane except possibly \(z=\infty\) (if \(x(n)\) has terms for \(n<0\)). Matches II. So, A-III, B-I, C-IV, D-II. \[ \boxed{\text{A -- III, B -- I, C -- IV, D -- II}} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |