To determine the hybridization of the central metal ion in each complex, we need to consider the oxidation state of the metal, its d-electron configuration, and the nature of the ligands (strong field or weak field).
A) \( \text{[CoF}_6\text{]}^{3-} \)
\begin{itemize}
\item Central metal: Co
\item Oxidation state: Let oxidation state of Co be $x$. $x + 6(-1) = -3 \Rightarrow x = +3$. So, \( \text{Co}^{3+} \).
\item Electronic configuration of \( \text{Co} \): \( \text{[Ar]} 3\text{d}^7 4\text{s}^2 \)
\item Electronic configuration of \( \text{Co}^{3+} \): \( \text{[Ar]} 3\text{d}^6 \)
\item Ligand: \( \text{F}^- \) (Fluoride) is a weak field ligand.
\item Since \( \text{F}^- \) is a weak field ligand, it does not cause pairing of electrons in the 3d orbitals.
\item The 6 ligands will occupy 4s, 4p, and 4d orbitals.
\item Hybridization: \( \text{sp}^3\text{d}^2 \) (outer orbital complex)
\item This matches with IV) \( \text{sp}^3\text{d}^2 \).
\end{itemize}
B) \( \text{[NiCl}_4\text{]}^{2-} \)
\begin{itemize}
\item Central metal: Ni
\item Oxidation state: Let oxidation state of Ni be $x$. $x + 4(-1) = -2 \Rightarrow x = +2$. So, \( \text{Ni}^{2+} \).
\item Electronic configuration of \( \text{Ni} \): \( \text{[Ar]} 3\text{d}^8 4\text{s}^2 \)
\item Electronic configuration of \( \text{Ni}^{2+} \): \( \text{[Ar]} 3\text{d}^8 \)
\item Ligand: \( \text{Cl}^- \) (Chloride) is a weak field ligand.
\item Since \( \text{Cl}^- \) is a weak field ligand, it does not cause pairing of electrons.
\item For a coordination number of 4, with weak field ligands, tetrahedral geometry and \( \text{sp}^3 \) hybridization are common.
\item Available orbitals for hybridization: 3d (full), 4s, 4p.
\item Hybridization: \( \text{sp}^3 \)
\item This matches with III) \( \text{sp}^3 \).
\end{itemize}
C) \( \text{[Ni(CN)_4\text{]}^{2-} \)}
\begin{itemize}
\item Central metal: Ni
\item Oxidation state: Let oxidation state of Ni be $x$. $x + 4(-1) = -2 \Rightarrow x = +2$. So, \( \text{Ni}^{2+} \).
\item Electronic configuration of \( \text{Ni} \): \( \text{[Ar]} 3\text{d}^8 4\text{s}^2 \)
\item Electronic configuration of \( \text{Ni}^{2+} \): \( \text{[Ar]} 3\text{d}^8 \)
\item Ligand: \( \text{CN}^- \) (Cyanide) is a strong field ligand.
\item Since \( \text{CN}^- \) is a strong field ligand, it causes pairing of electrons in the 3d orbitals. For \( \text{3d}^8 \), the two unpaired electrons will pair up, leaving one 3d orbital vacant.
\item Available orbitals for hybridization: one 3d, 4s, two 4p.
\item Hybridization: \( \text{dsp}^2 \) (inner orbital complex, square planar geometry)
\item This matches with I) \( \text{dsp}^2 \).
\end{itemize}
D) \( \text{[Co(NH}_3)_6\text{]^{3+} \)}
\begin{itemize}
\item Central metal: Co
\item Oxidation state: Let oxidation state of Co be $x$. $x + 6(0) = +3 \Rightarrow x = +3$. So, \( \text{Co}^{3+} \).
\item Electronic configuration of \( \text{Co} \): \( \text{[Ar]} 3\text{d}^7 4\text{s}^2 \)
\item Electronic configuration of \( \text{Co}^{3+} \): \( \text{[Ar]} 3\text{d}^6 \)
\item Ligand: \( \text{NH}_3 \) (Ammonia) is a strong field ligand for \( \text{Co}^{3+} \).
\item Since \( \text{NH}_3 \) is a strong field ligand, it causes pairing of electrons in the 3d orbitals. For \( \text{3d}^6 \), the electrons will pair up, leaving two 3d orbitals vacant.
\item Available orbitals for hybridization: two 3d, 4s, three 4p.
\item Hybridization: \( \text{d}^2\text{sp}^3 \) (inner orbital complex, octahedral geometry)
\item This matches with II) \( \text{d}^2\text{sp}^3 \).
\end{itemize}
Step 6: Form the Correct Match
A - IV
B - III
C - I
D - II
Step 7: Analyze Options
\begin{itemize}
\item Option (1): A-IV, B-I, C-III, D-II. Incorrect.
\item Option (2): A-II, B-I, C-III, D-IV. Incorrect.
\item Option (3): A-IV, B-III, C-I, D-II. Correct, as it matches our derived hybridizations.
\item Option (4): A-II, B-III, C-I, D-IV. Incorrect.
\end{itemize}