Question:

Match List I with List II
LIST ILIST II
(A) limx→1(1 − x)1/x(I) e
(B) limx→0 1/x ln(1 − x)(II) 1
(C) limx→0 (1 + x2)1/x(III) 0
(D) limx→∞ (1 + 1/x)x(IV) 2

Show Hint

Use known limit properties and approximations, such as limn→∞(1 + k/n)^n = e^k, to simplify computations.
Updated On: Dec 29, 2024
  • (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
  • (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
  • (A) - (IV), (B) - (II), (C) - (III), (D) - (I)
  • (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

(A) limn→∞(1 − 1/n)^2n = e−2, so (A) matches (IV). (B) limx→1(1 − x^2)[log(1 − x)]−1 = e, so (B) matches (II). (C) limx→0(1 + x^2)e−x = 1, so (C) matches (I). (D) limx→∞(1 + 2/x)^x = e^2, so (D) matches (III).
Was this answer helpful?
0
0

Top Questions on Algorithm

View More Questions

Questions Asked in CUET PG exam

View More Questions