List-I | List-II |
---|---|
(A) Confidence level | (I) Percentage of all possible samples that can be expected to include the true population parameter |
(B) Significance level | (III) The probability of making a wrong decision when the null hypothesis is true |
(C) Confidence interval | (II) Range that could be expected to contain the population parameter of interest |
(D) Standard error | (IV) The standard deviation of the sampling distribution of a statistic |
We are given a task to match terms from List-I with their appropriate definitions in List-II. Let's analyze each pair:
(A) Confidence level should be paired with the definition that describes what it represents. Confidence level (I) is indeed the Percentage of all possible samples that can be expected to include the true population parameter. Thus, (A)-(I).
(B) Significance level is the likelihood of rejecting the null hypothesis when it is true, which matches definition (III) The probability of making a wrong decision when the null hypothesis is true. Therefore, the correct pair is (B)-(III).
(C) Confidence interval is a range of values that is likely to contain the population parameter, matching with definition (II) Range that could be expected to contain the population parameter of interest. Hence, (C)-(II).
(D) Standard error refers to the variability of the sampling distribution of a statistic, corresponding to definition (IV) The standard deviation of the sampling distribution of a statistic. Thus, (D)-(IV).
Based on these explanations, the correct matching of List-I with List-II is: (A)-(I), (B)-(III), (C)-(II), (D)-(IV).
Therefore, the correct answer is: (A)-(I), (B)-(III), (C)-(II), (D)-(IV)
Match the terms from List-I to their corresponding definitions in List-II:
Thus, the correct match is:
(A) - (I), (B) - (III), (C) - (II), (D) - (IV).
In a survey, 60 % of 200 students prefer online classes, and 25 % of the remaining prefer hybrid classes. How many students prefer neither?