Question:

Match List I with List II:
List I (Regular Price and Sale Price)List II (Discount)
(A) Regular Price: ₹65
Sale Price: ₹55
(I) 13.33%
(B) Regular Price: ₹60
Sale Price: ₹50
(II) 15.38%
(C) Regular Price: ₹70
Sale Price: ₹50
(III) 16.66%
(D) Regular Price: ₹75
Sale Price: ₹65
(IV) 14.29%
Choose the correct answer from the options given below:

Updated On: Jan 2, 2025
  • (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
  • (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
  • (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
  • (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The formula for calculating the discount percentage is:

\[ \text{Discount Percentage} = \frac{\text{Regular Price} - \text{Sale Price}}{\text{Regular Price}} \times 100 \]

  • For option (A): \[ \text{Discount Percentage for A} = \frac{65 - 55}{65} \times 100 = \frac{10}{65} \times 100 = 15.38\% \]
  • For option (B): \[ \text{Discount Percentage for B} = \frac{60 - 50}{60} \times 100 = \frac{10}{60} \times 100 = 16.66\% \]
  • For option (C): \[ \text{Discount Percentage for C} = \frac{70 - 50}{70} \times 100 = \frac{20}{70} \times 100 = 28.57\% \]
  • For option (D): \[ \text{Discount Percentage for D} = \frac{75 - 65}{75} \times 100 = \frac{10}{75} \times 100 = 13.33\% \]

Thus, the correct matches are:

(A) – (II), (B) – (III), (C) – (IV), (D) – (I).

Was this answer helpful?
0
0

Top Questions on Profit and Loss

View More Questions