LIST I | LIST II | ||
A. | A square matrix A is said to be symmetric if | I. | A=A' |
B. | A square matrix A is said to be skew symmetric if | II. | A= -A' |
C. | If A is any square matrix then | III. | A+A' is a symmetric matrix |
D. | If A is any square matrix then | IV. | A-A' is a skew symmetric matrix |
LIST I | LIST II | ||
A. | Singular Matrix | I. | Determinant is always one. |
B. | Real Symmetric Matrix | II. | Digonal element are necessarily either purely imaginary or zero |
C. | Skew-Hermitian Matrix | III. | Eigen values are always Real |
D. | Orthogonal Matrix | IV. | Determinant is always zero |
List - I | List -II |
(A) Null Matrix | (I)\(P(A)+P(B)\) |
(B) Scaler Matrix | (II)\(P(A)+P(B)-2P(A\cap B)\) |
(C) Skew-symmetric matrix | (III)\(P(B)-P(A\cap B)\) |
(D)Symmetric Matrix | (IV)\(P(B)-P(A\cap B)\) |