Question:

Match List-I with List-II: \[ \begin{array}{|c|l|c|l|} \hline \textbf{List-I} & & \textbf{List-II} & \\ \hline (A) & \text{Relationship between the variable input and output.} & (III) & \text{Law of Variable Proportions} \\ \hline (B) & \text{Output per unit of variable input.} & (I) & \text{Average Product} \\ \hline (C) & \text{Change in output per unit of change in the input.} & (II) & \text{Marginal Product} \\ \hline (D) & \text{The marginal product of a factor input initially rises with its employment level.} & (IV) & \text{Total Product} \\ \hline \end{array} \]

Show Hint

- Total Product: Overall output.
- Average Product: Output per unit of input.
- Marginal Product: Extra output from one more unit of input.
- Law of Variable Proportions: MP first increases, then decreases.
Updated On: Sep 9, 2025
  • (A) – (IV), (B) – (I), (C) – (II), (D) – (III)
  • (A) – (I), (B) – (III), (C) – (II), (D) – (IV)
  • (A) – (II), (B) – (I), (C) – (IV), (D) – (III)
  • (A) – (III), (B) – (IV), (C) – (I), (D) – (II)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Match each item logically.
- (A) Relationship between variable input and output → Total Product (IV).
- (B) Output per unit of variable input → Average Product (I).
- (C) Change in output per unit of change in input → Marginal Product (II).
- (D) Marginal product first rises, then falls with input → Law of Variable Proportions (III).
Step 2: Verify with options.
This matches option (1).
Final Answer: \[ \boxed{(A) – (IV), \; (B) – (I), \; (C) – (II), \; (D) – (III)} \]
Was this answer helpful?
0
0