To solve this type of matching problem, we analyze each function from List-I and determine where it is increasing. Let's go through each one:
(A) \(\frac{x}{\log_e x}\)
To find where \(\frac{x}{\log_e x}\) is increasing, we can take its derivative and determine where it is positive. The derivative is:
\[ f'(x) = \frac{\log_e x - 1}{(\log_e x)^2} \]
Set \(f'(x) > 0\):
\[ \log_e x - 1 > 0 \Rightarrow \log_e x > 1 \Rightarrow x > e \]
The function is increasing in \((e, \infty)\).
(B) \(\frac{x}{2} + \frac{2}{x}, x \neq 0\)
Taking the derivative:
\[ f'(x) = \frac{1}{2} - \frac{2}{x^2} \]
Set \(f'(x) > 0\):
\[ \frac{1}{2} > \frac{2}{x^2} \Rightarrow x^2 > 4 \Rightarrow x > 2 \text{ or } x < -2 \]
The function is increasing in \((-\infty, -2) \cup (2, \infty)\).
(C) \(x^x, x > 0\)
Taking the derivative using the logarithm derivative rule:
\[ f(x) = x^x \Rightarrow \log y = x \log x \]
\[ f'(x) = x^x (\log x + 1) \]
Set \(f'(x) > 0\):
\[ \log x + 1 > 0 \Rightarrow \log x > -1 \Rightarrow x > \frac{1}{e} \]
The function is increasing in \(\left(\frac{1}{e}, \infty\right)\).
(D) \(\sin x - \cos x\)
Taking the derivative:
\[ f'(x) = \cos x + \sin x \]
Set \(f'(x) > 0\):
Use the range expression: \(\cos x + \sin x = \sqrt{2} \sin(x + \frac{\pi}{4})\), so
\[ \sin(x + \frac{\pi}{4}) > 0 \Rightarrow -\frac{\pi}{4} < x < \frac{\pi}{4} \]
The function is increasing in \((- \frac{\pi}{4}, \frac{\pi}{4})\).
Matching Results:
Comparing these intervals with List-II:
List-I (Function) | List-II (Interval in which function is increasing) |
---|---|
(A) \(\frac{x}{\log_e x}\) | (e, \infty) |
(B) \(\frac{x}{2} + \frac{2}{x}, x \neq 0\) | (-\infty, -2) \cup (2, \infty) |
(C) \(x^x, x > 0\) | \(\left(\frac{1}{e}, \infty\right)\) |
(D) \(\sin x - \cos x\) | \((- \frac{\pi}{4}, \frac{\pi}{4})\) |
Therefore, the correct answer is: (A-IV), (B-I), (C-III), (D-II)
(A) The function \( \frac{x}{\log_e x} \) is increasing for \( x > e \) (interval (IV)).
(B) The function \( \frac{x^2 + 1}{x - 2} \) is increasing in the intervals \( (-\infty, -2) \cup (2, \infty) \) (interval (I)).
(C) The exponential function \( e^x \) is increasing for \( x > 0 \), and the interval where the function is increasing for \( e^x \) is \( \left( \frac{1}{e}, \infty \right) \) (interval (III)).
(D) The function \( \sin x - \cos x \) is increasing in the interval \( \left( -\frac{\pi}{4}, \frac{\pi}{4} \right) \) (interval (II)).
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
On the basis of the given information, answer the followingIs \( f \) a bijective function?