Isotonic solutions have the same osmotic pressure. The osmotic pressure ($\pi$) is given by:
\[ \pi = CRT \]
where C is the molar concentration, R is the gas constant, and T is the temperature.
For isotonic solutions, $\pi_1 = \pi_2$, so:
\[ C_1RT = C_2RT \]
Since R and T are the same for both solutions, we have $C_1 = C_2$.
First, let's calculate the molar concentration of the urea solution:
Molar mass of urea (NH$_2$CONH$_2$) = (2 $\times$ 14) + (4 $\times$ 1) + 12 + 16 = 60 g/mol
Concentration of urea ($C_1$) = $\frac{mass}{molar mass \times volume} = \frac{15 g}{60 g/mol \times 1 L} = 0.25$ M
Now, we know the molar concentration of the glucose solution must also be 0.25 M. We can use this to calculate the mass of glucose needed:
Molar mass of glucose (C$_6$H$_{12}$O$_6$) = (6 $\times$ 12) + (12 $\times$ 1) + (6 $\times$ 16) = 180 g/mol
Mass of glucose (m) = $C_2 \times molar mass \times volume = 0.25 M \times 180 g/mol \times 1 L = 45$ g
Give reasons:
(a) Cooking is faster in a pressure cooker than in an open pan.
(b) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution?
© What change in temperature would you observe after mixing liquids X and Y?
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :