Step 1: Magnetic field at centre of a current loop.
For a circular loop of radius \(r\):
\[
B = \frac{\mu_0 I}{2r}
\Rightarrow I = \frac{2Br}{\mu_0}
\]
Step 2: Magnetic moment formula.
Magnetic moment:
\[
M = IA
\]
where \(A\) is area of loop. Step 3: Express radius using area.
For circular loop:
\[
A = \pi r^2
\Rightarrow r = \sqrt{\frac{A}{\pi}}
\]
Step 4: Substitute current and radius in moment.
\[
M = I A = \left(\frac{2Br}{\mu_0}\right)A
= \frac{2BAr}{\mu_0}
\]
Now substitute \(r = \sqrt{\frac{A}{\pi}}\):
\[
M = \frac{2BA}{\mu_0}\sqrt{\frac{A}{\pi}}
= \frac{2BA^{3/2}}{\mu_0\sqrt{\pi}}
\]
This matches option (D) in the given question representation. Final Answer:
\[
\boxed{\dfrac{2BA^{3/2}}{\mu_0^{1/2}}}
\]