Step 1: The direction ratios of the two lines are \( \overrightarrow{l_1} = \langle 2, -2, 1 \rangle \) and \( \overrightarrow{l_2} = \langle 1, -2, 2 \rangle \), and the position vector of a point on the first line is \( \overrightarrow{r_1} = \langle 1, 1, -1 \rangle \), and the position vector of a point on the second line is \( \overrightarrow{r_2} = \langle 4, -3, 2 \rangle \).
Step 2: To find the equation of the plane, we need the normal vector, which is the cross product of the direction ratios of the two lines:
\[
\overrightarrow{n} = \overrightarrow{l_1} \times \overrightarrow{l_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
2 & -2 & 1
1 & -2 & 2 \end{vmatrix}
\]
\[
= \hat{i} \begin{vmatrix} -2 & 1
-2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1
1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2
1 & -2 \end{vmatrix}
\]
\[
= \hat{i} \left( (-2)(2) - (1)(-2) \right) - \hat{j} \left( (2)(2) - (1)(1) \right) + \hat{k} \left( (2)(-2) - (-2)(1) \right)
\]
\[
= \hat{i} (-4 + 2) - \hat{j} (4 - 1) + \hat{k} (-4 + 2)
\]
\[
= -2\hat{i} - 3\hat{j} - 2\hat{k}
\]
Thus, the normal vector to the plane is \( \overrightarrow{n} = \langle -2, -3, -2 \rangle \).
Step 3: The equation of the plane is given by:
\[
\overrightarrow{n} \cdot (\overrightarrow{r} - \overrightarrow{r_1}) = 0
\]
Substitute the values of \( \overrightarrow{n} = \langle -2, -3, -2 \rangle \) and \( \overrightarrow{r_1} = \langle 1, 1, -1 \rangle \):
\[
-2(x - 1) - 3(y - 1) - 2(z + 1) = 0
\]
Simplifying:
\[
-2x + 2 - 3y + 3 - 2z - 2 = 0
\]
\[
-2x - 3y - 2z + 3 = 0
\]
Thus, the equation of the plane is:
\[
\boxed{2x + 3y + 2z = 3}
\]