Step 1: Find the Jacobian of transformation.
The area element transforms as \[ dx\,dy = |J|\,dx'dy', \] where \[ J = \frac{\partial(x, y)}{\partial(x', y')} = \frac{1}{\frac{\partial(x', y')}{\partial(x, y)}}. \] Step 2: Compute the determinant. 
Step 3: Therefore,
\[ dx\,dy = \frac{1}{17}dx'dy'. \] Step 4: Final Answer.
Hence, the area element in \( C' \) is \( \frac{1}{17}dx'dy' \).
Match List I with List II :
| List I | List II |
|---|---|
| (A) Temperature | (III) Kelvin (K) |
| (B) Mass | (I) Kilogram (kg) |
| (C) Electric current | (IV) Ampere (A) |
| (D) Length | (II) Meter (m) |
Choose the correct answer from the options given below :
Match List I with List II :
| List I | List II |
|---|---|
| (A) Electrical Energy into mechanical energy | (III) Electric motor |
| (B) Electrical Energy into Light energy | (II) Tube light |
| (C) Mechanical Energy into Electrical Energy | (I) Dynamo |
| (D) Solar energy into electrical energy | (IV) Solar cell |
Choose the correct answer from the options given below :
