Step 1: Find the Jacobian of transformation.
The area element transforms as \[ dx\,dy = |J|\,dx'dy', \] where \[ J = \frac{\partial(x, y)}{\partial(x', y')} = \frac{1}{\frac{\partial(x', y')}{\partial(x, y)}}. \] Step 2: Compute the determinant. 
Step 3: Therefore,
\[ dx\,dy = \frac{1}{17}dx'dy'. \] Step 4: Final Answer.
Hence, the area element in \( C' \) is \( \frac{1}{17}dx'dy' \).
