We use the conditional expectation formula for the multivariate normal distribution:
\[
E[X_1\mid X_2=x_2, X_3=x_3]
=\mu_1+\Sigma_{12}\Sigma_{22}^{-1}\begin{pmatrix}x_2-\mu_2
x_3-\mu_3\end{pmatrix}.
\]
Step 1: Identify components.
Partition $\Sigma$ as
\[
\Sigma=
\begin{pmatrix}
\Sigma_{11} & \Sigma_{12}
\Sigma_{21} & \Sigma_{22}
\end{pmatrix},
\]
where $\Sigma_{11}=4$, $\Sigma_{12}=(2,1)$, and
\[
\Sigma_{22}=
\begin{pmatrix}
3 & 0
0 & 2
\end{pmatrix}.
\]
Then $\Sigma_{22}^{-1}=\begin{pmatrix}1/3 & 0
0 & 1/2\end{pmatrix}$.
Step 2: Compute the conditional mean.
\[
\Sigma_{12}\Sigma_{22}^{-1}
=(2,1)
\begin{pmatrix}1/3 & 0
0 & 1/2\end{pmatrix}
=(2/3,\,1/2).
\]
Hence
\[
E[X_1\mid X_2=x_2,X_3=x_3]
=3+(2/3)(x_2-2)+(1/2)(x_3-4).
\]
Substituting $x_2=4, x_3=7$:
\[
E[X_1\mid X_2=4,X_3=7]
=3+(2/3)(2)+(1/2)(3)
=3+\tfrac{4}{3}+\tfrac{3}{2}
=\tfrac{6+4+4.5}{?}
=3+\tfrac{17}{6}
=5.83\approx6.
\]
Thus, the required expectation is $\boxed{6}$.