Question:

Let \( \sigma_{\nu}' \) and \( \sigma_{h}' \) denote the effective vertical stress and effective horizontal stress, respectively. Which one of the following conditions must be satisfied for a soil element to reach the failure state under Rankine's passive earth pressure condition?

Show Hint

In Rankine's passive earth pressure condition, the effective horizontal stress must be greater than the effective vertical stress for failure to occur.
Updated On: Jan 11, 2026
  • \( \sigma_{\nu}' < \sigma_{h}' \)
  • \( \sigma_{\nu}' > \sigma_{h}' \)
  • \( \sigma_{\nu}' = \sigma_{h}' \)
  • \( \sigma_{\nu}' + \sigma_{h}' = 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Under Rankine's passive earth pressure condition, the failure occurs when the effective vertical stress \( \sigma_{\nu}' \) is less than the effective horizontal stress \( \sigma_{h}' \). This is because in the passive state, the soil is resisting the lateral movement, and the horizontal stress exceeds the vertical stress at the point of failure.

Step 1: Understand Rankine's Earth Pressure Theory.
According to Rankine's theory, the soil element reaches failure under passive conditions when: \[ \sigma_{\nu}' < \sigma_{h}'. \]

Step 2: Conclusion.
Thus, the condition for failure under Rankine's passive earth pressure condition is \( \sigma_{\nu}' < \sigma_{h}' \).

Final Answer: \[ \boxed{\sigma_{\nu}' < \sigma_{h}'} \]

Was this answer helpful?
0
0

Top Questions on Earth pressure theories

View More Questions