Step 1: Formula for surface area.
The surface area of a surface \( z = f(x, y) \) over a region \( R \) is given by:
\[
S = \iint_R \sqrt{1 + \left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2} \, dx \, dy.
\]
For the given plane \( z = x + y + 3 \), we compute the partial derivatives:
\[
\frac{\partial z}{\partial x} = 1, \quad \frac{\partial z}{\partial y} = 1.
\]
Thus, the integrand becomes:
\[
\sqrt{1 + 1^2 + 1^2} = \sqrt{3}.
\]
Step 2: Set up the integral.
The region \( R \) is the disk \( x^2 + y^2 \leq 1 \), which is a circle with radius 1. Using polar coordinates, where \( x = r \cos \theta \), \( y = r \sin \theta \), and \( dx \, dy = r \, dr \, d\theta \), the surface area integral becomes:
\[
S = \int_0^{2\pi} \int_0^1 \sqrt{3} \cdot r \, dr \, d\theta.
\]
Step 3: Evaluate the integral.
First, integrate with respect to \( r \):
\[
\int_0^1 r \, dr = \frac{1}{2}.
\]
Now, integrate with respect to \( \theta \):
\[
\int_0^{2\pi} d\theta = 2\pi.
\]
Thus, the surface area is:
\[
S = \sqrt{3} \cdot \frac{1}{2} \cdot 2\pi = \pi \sqrt{3}.
\]
Step 4: Calculate \( \left( \frac{S}{\pi} \right)^2 \).
We have:
\[
\frac{S}{\pi} = \sqrt{3}, \quad \left( \frac{S}{\pi} \right)^2 = 3.
\]
Final Answer:
\[
\boxed{3}.
\]