Let \( R \) be a relation defined by \( R = \{(x, y) : x, y \text{ are Roll Numbers of students such that } y = x^3 \} \). List the elements of \( R \). Is \( R \) a function? Justify your answer.
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find a relation between \( x \) and \( y \) such that the surface area \( S \) is minimum.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
Let \(\mathbf{a}, \mathbf{b}\) and \(\mathbf{c}\) be three vectors such that \(\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}\) and \(\mathbf{a} \times \mathbf{b} \neq 0. Show \;that \;\mathbf{b} = \mathbf{c}\).
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.