Step 1: Use properties of eigenvalues.
For a \( 2 \times 2 \) matrix with eigenvalues \( \lambda_1 \) and \( \lambda_2 \):
\[
\lambda_1 + \lambda_2 = \text{trace}(M) = 6,
\]
\[
\lambda_1 \lambda_2 = \text{det}(M) = 8.
\]
Step 2: Solve for eigenvalues.
Let \( \lambda_1 = 2, \lambda_2 = 4 \). Then:
\[
\lambda_1 + \lambda_2 = 2 + 4 = 6, \quad \lambda_1 \lambda_2 = 8.
\]
Hence, both conditions are satisfied.
Step 3: Final Answer.
Eigenvalues of \( M \) are 2 and 4.