Let \( \{ e_k : k \in \mathbb{N} \} \) be an orthonormal basis for a Hilbert space \( H \).
Define \( f_k = e_k + e_{k+1}, k \in \mathbb{N} \) and \(g_j = \sum_{n=1}^{j} (-1)^{n+1} e_n, j\) \(\in \mathbb{N}.\)
\(\text{Then}\) \(\quad \sum_{k=1}^{\infty} | \langle g_j, f_k \)\(\rangle |^2 = \, ? \)