Let \( H \) be a complex Hilbert space. Let \( u, v \in H \) be such that \( \langle u, v \rangle = 2 \). Then \[ \frac{1}{2\pi} \int_0^{2\pi} \| u + e^{it} v \|^2 e^{it} dt = \underline{\hspace{1cm}}. \]
Let \( \ell^1 = \{ x = (x(1), x(2), \dots, x(n), \dots) : \sum_{n=1}^{\infty} |x(n)| < \infty \} \) be the sequence space equipped with the norm \( \|x\| = \sum_{n=1}^{\infty} |x(n)| \). Consider the subspace \[ X = \left\{ x \in \ell^1 : \sum_{n=1}^{\infty} |x(n)| < \infty \right\}, \] and the linear transformation \( T: X \to \ell^1 \) given by \( (Tx)(n) = n x(n) \text{ for } n = 1, 2, 3, \dots. \) Then: