Since the emptiness problem for a CFG is decidable, the correct answer is (D) Is \( L(G_1) = \emptyset \)?.
Match LIST-I with LIST-II \[\begin{array}{|c|c|c|}\hline \text{ } & \text{LIST-I} & \text{LIST-II} \\ \hline \text{A.} & \text{A Language L can be accepted by a Finite Automata, if and only if, the set of equivalence classes of $L$ is finite.} & \text{III. Myhill-Nerode Theorem} \\ \hline \text{B.} & \text{For every finite automaton M = $(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular.} & \text{II. Regular Expression Equivalence} \\ \hline \text{C.} & \text{Let, X and Y be two regular expressions over $\Sigma$. If X does not contain null, then the equation $R = Y + RX$ in R, has a unique solution (i.e. one and only one solution) given by $R = YX^*$.} & \text{I. Arden's Theorem} \\ \hline \text{D.} & \text{The regular expressions X and Y are equivalent if the corresponding finite automata are equivalent.} & \text{IV. Kleen's Theorem} \\ \hline \end{array}\]
\[\text{Matching List-I with List-II}\]
Choose the correct answer from the options given below:
Which of the following is the greatest? \[ 0.6, \ 0.666, \ \frac{5}{6}, \ \frac{2}{3} \]
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?