Since the emptiness problem for a CFG is decidable, the correct answer is (D) Is \( L(G_1) = \emptyset \)?.
Match LIST-I with LIST-II \[\begin{array}{|c|c|c|}\hline \text{ } & \text{LIST-I} & \text{LIST-II} \\ \hline \text{A.} & \text{A Language L can be accepted by a Finite Automata, if and only if, the set of equivalence classes of $L$ is finite.} & \text{III. Myhill-Nerode Theorem} \\ \hline \text{B.} & \text{For every finite automaton M = $(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular.} & \text{II. Regular Expression Equivalence} \\ \hline \text{C.} & \text{Let, X and Y be two regular expressions over $\Sigma$. If X does not contain null, then the equation $R = Y + RX$ in R, has a unique solution (i.e. one and only one solution) given by $R = YX^*$.} & \text{I. Arden's Theorem} \\ \hline \text{D.} & \text{The regular expressions X and Y are equivalent if the corresponding finite automata are equivalent.} & \text{IV. Kleen's Theorem} \\ \hline \end{array}\]
\[\text{Matching List-I with List-II}\]
Choose the correct answer from the options given below:
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

A square paper, shown in figure (I), is folded along the dotted lines as shown in figures (II) and (III). Then a few cuts are made as shown in figure (IV). Which one of the following patterns will be obtained when the paper is unfolded?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?