Given the function:
\([ f(x) = | |x| - 1| ]\)
Let's break down the function step-by-step:
Considering all the above observations, the function ( f(x) ) is not differentiable at ( x = 0, 1,) and ( -1 ).
Hence, the correct option is D: 0,±1
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.