Step 1: Compute \( \frac{\partial f}{\partial y} \) and \( \frac{\partial f}{\partial x} \).
For \( f(x, y) \), we need to compute the partial derivatives at the point \( (0, 0) \). We apply the definition of partial derivatives:
\[
\frac{\partial f}{\partial y}(0, 0) = \lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h}, \quad \frac{\partial f}{\partial x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h}.
\]
Evaluating these limits using the given expression for \( f(x, y) \), we find:
\[
\frac{\partial f}{\partial y}(0, 0) = 0, \quad \frac{\partial f}{\partial x}(0, 0) = 0.
\]
Final Answer:
\[
\boxed{0}.
\]