Let \( D = \{ z \in \mathbb{C} : |z| < 2 \pi \} \) and \( f: D \to \mathbb{C} \) be the function defined by \[ f(z) = \begin{cases} \frac{3z^2}{1 - \cos z} & \text{if } z \neq 0, \\ 6 & \text{if } z = 0. \end{cases} \] If \( f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ for } z \in D, \text{ then } 6a_2 = \underline{\hspace{1cm}}. \)