Step 1: Prove that \( f \) is one-one
Let \( f(x_1) = f(x_2) \), where \( x_1, x_2 \in A \): \[ \frac{x_1 - 3}{x_1 - 5} = \frac{x_2 - 3}{x_2 - 5} \] Cross-multiply: \[ (x_1 - 3)(x_2 - 5) = (x_2 - 3)(x_1 - 5) \] Simplify: \[ x_1x_2 - 5x_1 - 3x_2 + 15 = x_1x_2 - 5x_2 - 3x_1 + 15 \] \[ -5x_1 - 3x_2 = -5x_2 - 3x_1 \implies 5(x_2 - x_1) = 3(x_2 - x_1) \] If \( x_1 \neq x_2 \), this leads to a contradiction. Hence, \( x_1 = x_2 \), proving \( f \) is one-one.
Step 2: Prove that \( f \) is onto
Let \( y \in B \). Solve \( f(x) = y \): \[ \frac{x - 3}{x - 5} = y \implies x - 3 = y(x - 5) \] \[ x - 3 = yx - 5y \implies x - yx = -5y + 3 \] \[ x(1 - y) = -5y + 3 \implies x = \frac{-5y + 3}{1 - y} \] For \( y \neq 1 \) (since \( y \in B \)), \( x \) exists in \( A \). Thus, \( f \) is onto.
Step 3: Conclude the function properties
Since \( f \) is both one-one and onto, \( f \) is a bijection.

Comparative Financial Data as on 31st March, 2024 and 2023
| Particulars | 31.03.2024 (₹) | 31.03.2023 (₹) |
|---|---|---|
| Surplus (P&L) | 17,00,000 | 8,00,000 |
| Patents | -- | 50,000 |
| Sundry Debtors | 5,80,000 | 4,20,000 |
| Sundry Creditors | 1,40,000 | 60,000 |
| Cash and Cash Equivalents | 2,00,000 | 90,000 |
Balance Sheet of Madhavan, Chatterjee and Pillai as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Creditors | 1,10,000 | Cash at Bank | 4,05,000 |
| Outstanding Expenses | 17,000 | Stock | 2,20,000 |
| Mrs. Madhavan’s Loan | 2,00,000 | Debtors | 95,000 |
| Chatterjee’s Loan | 1,70,000 | Less: Provision for Doubtful Debts | (5,000) |
| Capitals: | Madhavan – 2,00,000 | Land and Building | 1,82,000 |
| Chatterjee – 1,00,000 | Plant and Machinery | 1,00,000 | |
| Pillai – 2,00,000 | |||
| Total | 9,97,000 | Total | 9,97,000 |
