Step 1: Prove that \( f \) is one-one
Let \( f(x_1) = f(x_2) \), where \( x_1, x_2 \in A \): \[ \frac{x_1 - 3}{x_1 - 5} = \frac{x_2 - 3}{x_2 - 5} \] Cross-multiply: \[ (x_1 - 3)(x_2 - 5) = (x_2 - 3)(x_1 - 5) \] Simplify: \[ x_1x_2 - 5x_1 - 3x_2 + 15 = x_1x_2 - 5x_2 - 3x_1 + 15 \] \[ -5x_1 - 3x_2 = -5x_2 - 3x_1 \implies 5(x_2 - x_1) = 3(x_2 - x_1) \] If \( x_1 \neq x_2 \), this leads to a contradiction. Hence, \( x_1 = x_2 \), proving \( f \) is one-one.
Step 2: Prove that \( f \) is onto
Let \( y \in B \). Solve \( f(x) = y \): \[ \frac{x - 3}{x - 5} = y \implies x - 3 = y(x - 5) \] \[ x - 3 = yx - 5y \implies x - yx = -5y + 3 \] \[ x(1 - y) = -5y + 3 \implies x = \frac{-5y + 3}{1 - y} \] For \( y \neq 1 \) (since \( y \in B \)), \( x \) exists in \( A \). Thus, \( f \) is onto.
Conclude the function properties
Since \( f \) is both one-one and onto, \( f \) is a bijection.
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: