Question:

Let \( A = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \) and \( A + A^T - 2I = 0 \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. The value of \( \theta \) (in degrees) is ............

Show Hint

When solving matrix equations, break down each element and solve for the variables involved.
Updated On: Dec 2, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 90

Solution and Explanation

Step 1: Understanding the given condition. 
We are given the matrix: \[ A = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} \] and the condition: \[ A + A^T - 2I = 0, \] where \( A^T \) is the transpose of \( A \), and \( I \) is the identity matrix. 

tep 2: Taking the transpose of matrix \( A \). 

The transpose of \( A \) is: \[ A^T = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}. \] 

Step 3: Substituting into the equation. 
Substituting \( A \) and \( A^T \) into the given equation: \[ \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} + \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0. \] Simplifying: \[ \begin{pmatrix} 2\sin \theta - 2 & 2\cos \theta \\ 2\cos \theta & 2\sin \theta - 2 \end{pmatrix} = 0. \] 

Step 4: Solving the equation. 
For the matrix to be zero, each element must be zero: \[ 2\sin \theta - 2 = 0 \text{and} 2\cos \theta = 0. \] Solving these gives: \[ \sin \theta = 1 \text{and} \cos \theta = 0. \] 

Step 5: Conclusion.
The value of \( \theta \) that satisfies these equations is \( \theta = 90^\circ \).

Final Answer: \( \boxed{90^\circ} \).

Was this answer helpful?
0
0