Let \(A = \begin{bmatrix}n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n\end{bmatrix}\) and \(B = \begin{bmatrix}0 & 0 & n \\ 0 & n & 0 \\ n & 0 & 0\end{bmatrix}\). Then \(A^2 + B^2 + AB =\)
Show Hint
Matrix Operations}
Diagonal matrices are easy to exponentiate
Permutation matrices cycle their entries when multiplied
Factor out common terms for simplified expressions