Question:

Let \(A = \begin{bmatrix}n & 0 & 0 \\ 0 & n & 0 \\ 0 & 0 & n\end{bmatrix}\) and \(B = \begin{bmatrix}0 & 0 & n \\ 0 & n & 0 \\ n & 0 & 0\end{bmatrix}\). Then \(A^2 + B^2 + AB =\)

Show Hint

Matrix Operations}
Diagonal matrices are easy to exponentiate
Permutation matrices cycle their entries when multiplied
Factor out common terms for simplified expressions
Updated On: May 19, 2025
  • \(n^2 I\)
  • \(n^2 B\)
  • \(n^2 (2I + B)\)
  • \(n^2 (I + B)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Compute \(A^2\): \[ A^2 = \begin{bmatrix}n^2 & 0 & 0 \\ 0 & n^2 & 0 \\ 0 & 0 & n^2\end{bmatrix} = n^2 I \] Step 2: Compute \(B^2\): \[ B^2 = \begin{bmatrix}n^2 & 0 & 0 \\ 0 & n^2 & 0 \\ 0 & 0 & n^2\end{bmatrix} = n^2 I \] Step 3: Compute \(AB\): \[ AB = \begin{bmatrix}0 & 0 & n^2 \\ 0 & n^2 & 0 \\ n^2 & 0 & 0\end{bmatrix} = n^2 B \] Step 4: Combine results: \[ A^2 + B^2 + AB = n^2 I + n^2 I + n^2 B = n^2 (2I + B) \]
Was this answer helpful?
0
0