We first compute the gradient of \( \phi(x, y) \) and then find the directional derivative along the given direction. The gradient is: \[ \nabla \phi = \left( \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \right) \] After calculating the gradient, we compute the magnitude of the directional derivative and then find \( 1/a^2 \).
Match List-I with List-II\[\begin{array}{|c|c|} \hline \textbf{Provision} & \textbf{Case Law} \\ \hline \text{(A) Strict Liability} & \text{(1) Ryland v. Fletcher} \\ \hline \text{(B) Absolute Liability} & \text{(II) M.C. Mehta v. Union of India} \\ \hline \text{(C) Negligence} & \text{(III) Nicholas v. Marsland} \\ \hline \text{(D) Act of God} & \text{(IV) MCD v. Subhagwanti} \\ \hline \end{array}\]
Match List-I with List-II\[\begin{array}{|c|c|} \hline \textbf{List-1} & \textbf{List-II} \\ \hline \text{(A) Hadley v. Baxendale} & \text{(1) Undue Influence} \\ \hline \text{(B) Henkel v. Pape} & \text{(II) Coercion} \\ \hline \text{(C) Manu Singh v. Umadat Pandey} & \text{(III) Quantum of Damages} \\ \hline \text{(D) Chikkam Amiraju v. Seshamma} & \text{(IV) Mistake} \\ \hline \end{array}\]
Match List-I with List-II
\[\begin{array}{|c|c|} \hline \textbf{List-1} & \textbf{List-II} \\ \hline \text{(A) Complete Justice} & \text{(I) Article 137} \\ \hline \text{(B) Special Leave Petition} & \text{(II) Article 131} \\ \hline \text{(C) Review of the Judgments} & \text{(III) Article 142} \\ \hline \text{(D) Original Jurisdiction} & \text{(IV) Article 136} \\ \hline \end{array}\]
Match List-I with List-II
Match List-I with List-II
\[\begin{array}{|c|c|} \hline \textbf{List-1} & \textbf{List-II} \\ \hline \text{(A) Ram Jawaya Kapur v. State of Punjab} & \text{(I) Separation of powers} \\ \hline \text{(B) Delhi Laws Act, 1912} & \text{(II) Delegated legislation} \\ \hline \text{(C) Maneka Gandhi v. Union of India} & \text{(III) Doctrine of proportionality} \\ \hline \text{(D) Om Kumar v. Union of India} & \text{(IV) Post decisional hearing} \\ \hline \end{array}\]