A = {1, 2} and B = {3, 4}
∴A x B = {(1, 3), (1, 4), (2, 3), (2, 4)}
⇒ n(A x B) = 4
We know that if C is a set with n(C) = m, then n[P(C)] = 2m
Therefore, the set A x B has 24= 16 subsets.
These are:
Φ, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)},
{(1, 3), (2, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)}, {(2, 3), (2, 4)},
{(1, 3), (1, 4), (2, 3)}, {(1, 3), (1, 4), (2, 4)}, {(1, 3), (2, 3), (2, 4)},
{(1, 4), (2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3), (2, 4)}
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
A relation R from a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.
A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B. In other words, no two distinct elements of B have the same pre-image.
Relations and functions can be represented in different forms such as arrow representation, algebraic form, set-builder form, graphically, roster form, and tabular form. Define a function f: A = {1, 2, 3} → B = {1, 4, 9} such that f(1) = 1, f(2) = 4, f(3) = 9. Now, represent this function in different forms.
