Step 1: Use similarity scaling for areas.
If corresponding sides scale by factor $k$, then areas scale by $k^2$.
Given $k=2$ (park side is double bed side) ⇒
\[
\frac{\text{Area(park)}}{\text{Area(bed)}} = k^2 = 2^2 = 4.
\]
Step 2: Express path area and form the ratio.
\[
\text{Area(path)} = \text{Area(park)} - \text{Area(bed)} = 4A - A = 3A,
\]
where $A=\text{Area(bed)}$.
Step 3: Compute required ratio.
\[
\text{Path} : \text{Bed} = 3A : A = 3:1.
\]
\[
\boxed{3:1}
\]