(a) Phosphorus (P): Atomic number = 15
The electronic configuration of P is: 1s2 2s2 2p6 3s2 3p3
The orbital picture of P can be represented as:
From the orbital picture, phosphorus has three unpaired electrons.
(b) Silicon (Si): Atomic number = 14
The electronic configuration of Si is: 1s2 2s2 2p6 3s2 3p2
The orbital picture of Si can be represented as:
From the orbital picture, silicon has two unpaired electrons.
(c) Chromium (Cr): Atomic number = 24
The electronic configuration of Cr is: 1s2 2s2 2p6 3s2 3p6 4s1 3d5
The orbital picture of chromium is:
From the orbital picture, chromium has six unpaired electrons.
(d) Iron (Fe): Atomic number = 26
The electronic configuration is: 1s2 2s2 2p6 3s2 3p6 4s2 3d6
The orbital picture of chromium is:
From the orbital picture, iron has four unpaired electrons.
(e) Krypton (Kr): Atomic number = 36
The electronic configuration is: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6
The orbital picture of krypton is:
Since all orbitals are fully occupied, there are no unpaired electrons in krypton.
Identify the correct statements about alkali metals
A. The order of standard reduction potential \(\left( M ^{+} \mid M \right)\)for alkali metal ions is \(Na > Rb > Li\)
B. \(CsI\)is highly soluble in water.
C. Lithium carbonate is highly stable to heat.
D. Potassium dissolved in concentrated liquid ammonia is blue in colour and paramagnetic.
E. All the alkali metal hydrides are ionic solids.
Choose the correct answer from the options given below:
The number of s-electrons present in an ion with 55 protons in its unipositive state is
The atomic structure of an element refers to the constitution of its nucleus and the arrangement of the electrons around it. Primarily, the atomic structure of matter is made up of protons, electrons and neutrons.
Dalton proposed that every matter is composed of atoms that are indivisible and indestructible.
The following are the postulates of his theory:
Several atomic structures of an element can exist, which differ in the total number of nucleons.These variants of elements having a different nucleon number (also known as the mass number) are called isotopes of the element. Therefore, the isotopes of an element have the same number of protons but differ in the number of neutrons. For example, there exist three known naturally occurring isotopes of hydrogen, namely, protium, deuterium, and tritium.