In $\triangle ABC$, $D$ is a point on $BC$ such that $3BD=BC$. If each side of the triangle is $12\,$cm, then $AD$ equals
$4\sqrt{11}$
“All sides $12$ cm" $\Rightarrow$ $\triangle ABC$ is equilateral, so place $B(-6,0)$, $C(6,0)$, $A\big(0,6\sqrt3\big)$. Since $3BD=BC=12$, we have $BD=4$. Moving $4$ units from $B$ to $C$ along $BC$ gives \[ D=(-6,0)+\frac{4}{12}(12,0)=(-2,0). \] Therefore \[ AD=\sqrt{(0-(-2))^2+\big(6\sqrt3-0\big)^2} =\sqrt{4+108}=\sqrt{112}=4\sqrt7. \]