


An investment company, Win Lose, recruit's employees to trade in the share market. For newcomers, they have a one-year probation period. During this period, the employees are given Rs. 1 lakh per month to invest the way they see fit. They are evaluated at the end of every month, using the following criteria:
1. If the total loss in any span of three consecutive months exceeds Rs. 20,000, their services are terminated at the end of that 3-month period,
2. If the total loss in any span of six consecutive months exceeds Rs. 10,000, their services are terminated at the end of that 6-month period.
Further, at the end of the 12-month probation period, if there are losses on their overall investment, their services are terminated.
Ratan, Shri, Tamal and Upanshu started working for Win Lose in January. Ratan was terminated after 4 months, Shri was terminated after 7 months, Tamal was terminated after 10 months, while Upanshu was not terminated even after 12 months. The table below, partially, lists their monthly profits (in Rs. ‘000’) over the 12-month period, where x, y and z are masked information.
Note:
• A negative profit value indicates a loss.
• The value in any cell is an integer.
Illustration: As Upanshu is continuing after March, that means his total profit during January-March (2z +2z +0) ≥
Rs.20,000. Similarly, as he is continuing after June, his total profit during January − June ≥
Rs.10,000, as well as his total profit during April-June ≥ Rs.10,000.
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:

A point charge \( q \) is placed at a distance \( d \) above an infinite, grounded conducting plate placed on the \( xy \)-plane at \( z = 0 \).
The electrostatic potential in the \( z > 0 \) region is given by \( \phi = \phi_1 + \phi_2 \), where:
\( \phi_1 = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} \)
\( \phi_2 = - \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \)
Which of the following option(s) is/are correct?
Two projectile protons \( P_1 \) and \( P_2 \), both with spin up (along the \( +z \)-direction), are scattered from another fixed target proton \( T \) with spin up at rest in the \( xy \)-plane, as shown in the figure. They scatter one at a time. The nuclear interaction potential between both the projectiles and the target proton is \( \hat{\lambda} \vec{L} \cdot \vec{S} \), where \( \vec{L} \) is the orbital angular momentum of the system with respect to the target, \( \vec{S} \) is the spin angular momentum of the system, and \( \lambda \) is a negative constant in appropriate units. Which one of the following is correct?
