Step 1: Rate expression.
For the reaction:
\[
2A \longrightarrow \text{Products}
\]
\[
\text{Rate} = -\frac{1}{2}\frac{\Delta [A]}{\Delta t}
\]
Step 2: Change in concentration of A.
Initial $[A] = 0.5$ mol L$^{-1}$
Final $[A] = 0.4$ mol L$^{-1}$
\[
\Delta [A] = 0.4 - 0.5 = -0.1 \, \text{mol L}^{-1}
\]
Step 3: Time interval.
\[
\Delta t = 10 \, \text{min} = 600 \, \text{s}
\]
Step 4: Calculate rate.
\[
\text{Rate} = -\frac{1}{2}\frac{\Delta [A]}{\Delta t} = -\frac{1}{2}\frac{-0.1}{600}
\]
\[
\text{Rate} = \frac{0.1}{1200} = 8.33 \times 10^{-5} \, \text{mol L}^{-1}\text{s}^{-1}
\]
Conclusion:
The rate of reaction during the given time interval is:
\[
\boxed{8.33 \times 10^{-5} \, \text{mol L}^{-1}\text{s}^{-1}}
\]