Step 1: Small-signal parameters. Bias gives \(I_D=(5-4)/R_D=1~\text{mA}\).
Overdrive from square law: \(I_D=\frac{k_n}{2}V_{ov}^2\) with \(k_n=\mu_n C_{ox}(W/L)=2~\text{mA/V}^2\Rightarrow V_{ov}=1~\text{V}\).
Hence \(g_m=2I_D/V_{ov}=2~\text{mS}\).
Step 2: Gain with source degeneration (no \(r_o\)).
Gate is driven by \(V_{in}\) (coupling cap short; supplies are AC ground), so
\[
v_{gs}=\frac{v_{in}}{1+g_mR_S},\qquad v_o=-g_mR_D\,v_{gs}.
\]
Thus
\[
\frac{V_o}{V_{in}}=-\frac{g_mR_D}{1+g_mR_S}
=-\frac{(2~\text{mS})(1~\text{k}\Omega)}{1+(2~\text{mS})(1~\text{k}\Omega)}
=-\frac{2}{3}=-0.6667.
\]
Magnitude \(\approx 0.67\).
Final Answer: \(|V_{\mathrm{out}}/V_{\mathrm{in}}| \approx 0.67\)