From the logic diagram:
- The first gate is an OR gate:
\[
P = A + B
\]
- P is connected to one input of the AND gate, and B is directly connected to the other input.
So,
\[
Q = P \cdot B = (A + B) \cdot B
\Rightarrow Q = B
\]
(Since \(A + B\) AND \(B\) simplifies to just \(B\))
Thus:
- \(P = A + B\)
- \(Q = B\)
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
The logic circuit consists of the following:
The first gate is an OR gate that takes inputs \( A \) and \( B \).
The output of the OR gate is \( P \), so \( P = A + B \).
This output \( P \) and the original input \( B \) are then fed into an AND gate.
So, the final output \( Q = P \cdot B = (A + B) \cdot B \).
However, based on the diagram and asked values for \( P \) and \( Q \), they are:
Correct Answer:
\[
P = A + B,\quad Q = B
\]
since the output line from the OR gate marked as \( P \) is correct, but \( Q \) is directly connected only to \( B \) (as shown in the circuit). The OR gate output doesn't contribute to Q in this particular figure due to how the wiring is done.