Place \(A(0,0),\ B(w,0),\ C(w,h),\ D(0,h)\). Then
\[
P=\left(\tfrac{w}{2},\,h\right),\qquad Q=\left(w,\,\tfrac{h}{2}\right).
\]
Unshaded region is \(\triangle APQ\). Its area
\[
[APQ]=\tfrac12\left|\det\!\begin{pmatrix}\tfrac{w}{2}& h \\[2pt] w & \tfrac{h}{2}\end{pmatrix}\right|
=\tfrac12\left|\tfrac{wh}{4}-wh\right|
=\tfrac{3wh}{8}.
\]
Rectangle area \(=wh\), so shaded area \(=wh-\tfrac{3wh}{8}=\tfrac{5wh}{8}\). Hence
\[
\text{Shaded:Unshaded}=\frac{5/8}{3/8}= \boxed{5:3}.
\]