By applying Kirchhoff’s Current Law (KCL) at the nodes:
- At Node 1:
\[
I_1 = I_2 + I_3 + I_6
\]
Given, \(I_1 = 5 \, A\), we have:
\[
5 = I_2 + I_3 + I_6 \tag{1}
\]
- At Node 2:
\[
I_4 + I_5 = I_2 + I_6
\]
Given, \(I_4 = 10 \, A\), \(I_5 = 15 \, A\), we have:
\[
25 = I_2 + I_6 \tag{2}
\]
Now solving the system of equations:
From (2), we have \(I_2 + I_6 = 25\).
Substituting into (1):
\[
5 = I_3 + 25
\]
\[
I_3 = -20
\]
Thus, \(I_2 = 15A\), \(I_3 = 5A\), and \(I_6 = 15A\).