In the following diagram, the work done in moving a point charge from point P to point A, B and C are \( W_A, W_B, W_C \) respectively. Then (A, B, C are points on semicircle and point charge \( q \) is at the centre of semicircle)



If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: