Load impedance magnitude $|Z|=\sqrt{\left(\frac{230}{\sqrt{2}}\right)^2+\left(\frac{230}{\sqrt{2}}\right)^2}=230~\Omega$.
Hence load (and line) current: $I_{\text{rms}}=\dfrac{230}{230}=1$ A. The $1~\Omega$ series resistor gives
\[
V_x(\text{rms})= I_{\text{rms}}\times 1~\Omega=1~\text{V}.
\]
Because $Z$ has angle $+45^\circ$, current lags $V_{\text{load}}$ by $45^\circ$. The $+90^\circ$ phase shifter makes
\[
v_y(\text{rms})=\frac{230}{50\sqrt{2}}=3.2527~\text{V}, \qquad
\angle(v_y)-\angle(i) = 90^\circ-(-45^\circ)=135^\circ .
\]
For two sinusoids at the same frequency, the average of the product equals
\[
\overline{v_o}=\frac{V_x V_y}{1~\text{V}}\cos(\Delta\phi)
=1\times 3.2527\times \cos 135^\circ
=3.2527\times(-0.7071)\approx -2.30~\text{V}.
\]
Requested magnitude: $\boxed{2.3~\text{V}}$ (to one decimal place).