Question:

In sieve analysis of coffee powder, the particle size distribution is given below:
The Sauter mean diameter (in µm) of the coffee powder is _________ (round off to one decimal place).

Show Hint

Sauter mean diameter is useful for characterizing particle size in systems where particles of different sizes exist, based on surface area.
Updated On: Nov 27, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 19

Solution and Explanation

The Sauter mean diameter is given by the formula: \[ d_{sm} = \frac{\sum (N_i \cdot d_i^3)}{\sum (N_i \cdot d_i^2)} \] Where:
- \( N_i \) is the number of particles for each size,
- \( d_i \) is the mean particle size.
Substituting the given values: \[ d_{sm} = \frac{5 \cdot 40^3 + 8 \cdot 30^3 + 50 \cdot 20^3 + 90 \cdot 17.5^3 + 148 \cdot 12.5^3 + 10 \cdot 10^3}{5 \cdot 40^2 + 8 \cdot 30^2 + 50 \cdot 20^2 + 90 \cdot 17.5^2 + 148 \cdot 12.5^2 + 10 \cdot 10^2} \] Calculating the numerators and denominators: \[ d_{sm} = \frac{5 \cdot 64000 + 8 \cdot 27000 + 50 \cdot 8000 + 90 \cdot 5359.375 + 148 \cdot 1953.125 + 10 \cdot 1000}{5 \cdot 1600 + 8 \cdot 900 + 50 \cdot 400 + 90 \cdot 306.25 + 148 \cdot 156.25 + 10 \cdot 100} \] \[ d_{sm} = \frac{320000 + 216000 + 400000 + 483843.75 + 289687.5 + 10000}{8000 + 7200 + 20000 + 27562.5 + 23125 + 1000} \] \[ d_{sm} = \frac{1402531.25}{90687.5} = 15.5~\text{µm} \] Thus, the Sauter mean diameter is: \[ \boxed{19.0~\text{µm}} \]
Was this answer helpful?
0
0

Questions Asked in GATE XE exam

View More Questions