The Sauter mean diameter is given by the formula:
\[
d_{sm} = \frac{\sum (N_i \cdot d_i^3)}{\sum (N_i \cdot d_i^2)}
\]
Where:
- \( N_i \) is the number of particles for each size,
- \( d_i \) is the mean particle size.
Substituting the given values:
\[
d_{sm} = \frac{5 \cdot 40^3 + 8 \cdot 30^3 + 50 \cdot 20^3 + 90 \cdot 17.5^3 + 148 \cdot 12.5^3 + 10 \cdot 10^3}{5 \cdot 40^2 + 8 \cdot 30^2 + 50 \cdot 20^2 + 90 \cdot 17.5^2 + 148 \cdot 12.5^2 + 10 \cdot 10^2}
\]
Calculating the numerators and denominators:
\[
d_{sm} = \frac{5 \cdot 64000 + 8 \cdot 27000 + 50 \cdot 8000 + 90 \cdot 5359.375 + 148 \cdot 1953.125 + 10 \cdot 1000}{5 \cdot 1600 + 8 \cdot 900 + 50 \cdot 400 + 90 \cdot 306.25 + 148 \cdot 156.25 + 10 \cdot 100}
\]
\[
d_{sm} = \frac{320000 + 216000 + 400000 + 483843.75 + 289687.5 + 10000}{8000 + 7200 + 20000 + 27562.5 + 23125 + 1000}
\]
\[
d_{sm} = \frac{1402531.25}{90687.5} = 15.5~\text{µm}
\]
Thus, the Sauter mean diameter is:
\[
\boxed{19.0~\text{µm}}
\]